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Abstract

We present a structured interior-point method for the e�cient solution of the op-
timal control problem in model predictive control (MPC). The cost of this approach
is linear in the horizon length, compared with cubic growth for a naive approach. We
use a discrete-time Riccati recursion to solve the linear equations e�ciently at each
iteration of the interior-point method, and show that this recursion is numerically sta-
ble. We demonstrate the e�ectiveness of the approach by applying it to three process
control problems.

1 Introduction

Model predictive control (MPC) is an optimal control-based strategy that uses a plant model
to predict the e�ect of an input pro�le on the evolving state of the plant. At each step of
MPC, an optimal control problem with Bolza objectives is solved and its optimal input
pro�le is implemented until another plant measurement becomes available. The updated
plant information is used to formulate and solve a new optimal control problem|thereby
providing feedback from the plant to the model|and the process is repeated. This strategy
yields a receding horizon control formulation.

The MPC methodology is appealing to the practitioner because input and state con-
straints can be explicitly accounted for in the controller. A practical disadvantage is its
computational cost, which has tended to limit MPC applications to linear processes with
relatively slow dynamics. For such problems, the optimal control problem to be solved at
each stage of MPC is a convex quadratic program. While robust and e�cient software exists
for the solution of unstructured convex quadratic programs, signi�cant improvements often
can be made by exploiting the structure of the MPC subproblem.

When input and state constraints are not present, MPC with an in�nite horizon is simply
the well-known linear-quadratic regulator problem. Even when constraints are present, the
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in�nite-horizon MPC problem generally reduces to a linear-quadratic regulator after a certain
number of stages (see [4, 21, 24]) and therefore can be recast as a �nite-dimensional quadratic
program. Since this quadratic program can be large, with many stages, it is important that
algorithms be e�cient for problems with long horizons.

Unconstrained discrete-time linear-quadratic optimal control problems can be solved by
using a discrete-time Riccati equation. The computational cost of this algorithm is linear
in the horizon length N . A di�erent formulation obtained by eliminating the state variables
results in an unconstrained quadratic function whose Hessian is dense, with dimensions that
grow linearly in N . The cost of minimizing this quadratic function is cubic in N , making
it uncompetitive with the Riccati approach in general. There is a third option, however|
an optimization formulation in which the states are retained explicitly as unknowns in the
optimization and the model equation is retained as a constraint. The optimality conditions
for this formulation reveal that the adjoint variables are simply the Lagrange multipliers
for the model equation and that the problem can be solved by factoring a matrix whose
dimension again grows linearly with N . In this formulation, however, the matrix is banded,
with a bandwidth independent of N , so the cost of the factorization is linear rather than
cubic in N . The discrete-time Riccati equation can be interpreted as a block factorization
scheme applied to this matrix.

Traditionally, the discrete-time Riccati equation is obtained by using dynamic program-
ming to solve the unconstrained linear optimal control problem. The essential idea in dy-
namic programming is to work stage-by-stage through the problem in reverse order, starting
with the �nal stage N . The optimization problem reduces to a simpler problem at each stage.
(See Berksekas [2] for further details.) Block factorization, like dynamic programming, ex-
ploits the multi-staged nature of the optimization problem. The key di�erence is that the
block factorization approach tackles the problem explicitly, whereas dynamic programming
tackles the problem semi-implicitly by using Bellman's principle of optimality. The explicit
treatment allows greater 
exibility, however, since the block factorization approach retains
its inherent structure even when inequality constraints are added to the formulation.

When constraints are present, the scheme for unconstrained problems must be embedded
in an algorithmic framework that determines which of the inequalities are active and which
are inactive at the optimum. At each iteration of the outer algorithm, however, the main
computational operation is the solution of a set of linear equations whose structure is very
like that encountered in the unconstrained problem. Hence, the cost of performing each
iteration of the outer algorithm is linear in the number of stages N . This observation has
been made by numerous authors, in the context of outer algorithms based on both active-set
and interior-point methods. Glad and Jonson [9] and Arnold et al. [1] demonstrate that the
factorization of a structured Lagrangian in an optimal control problem with a Bolza objective
for an active set framework yields a Riccati recursion. Wright [25, 27], Steinbach [23], and
Lim et al. [12] investigate the Bolza control problem in an interior-point framework.

In this paper we present an MPC algorithm based on an interior-point method, in which
a block factorization is used at each iteration to obtain the search direction for the interior-
point method. Our work di�ers from earlier contributions in that the formulation of the
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optimal control problem is tailored to the MPC application, the interior-point algorithm is
based on Mehrotra's algorithm [15] (whose practical e�ciency on general linear and quadratic
programming problems is well documented), and the linear system at each interior-point
iteration is solved e�ciently by a Riccati recursion. We compare our approach with the
alternative of using the model equation to eliminate the states, yielding a dense quadratic
program in the input variables alone, and present results obtained for three large industrial
problems.

We use order notation in the following (standard) way: If a matrix, vector, or scalar
quantity M is a function of another matrix, vector, or scalar quantity E, we write M =
O(kEk) if there is a constant � such that kMk � �kEk for all kEk su�ciently small. We
write M = �(kEk) if there is a constant � such that kEk=� � kMk � �kEk.

We say that a matrix is \positive diagonal" if it is diagonal with positive diagonal el-
ements. The term \nonnegative diagonal" is de�ned correspondingly. We use SPD as an
abbreviation for \symmetric positive de�nite" and SPSD as an abbreviation for \symmetric
positive semide�nite."

2 Model Predictive Control

2.1 In�nite-Horizon Problem

The fundamental formulation of the linear model predictive controller is the following in�nite-
dimensional convex quadratic program:

min
u;x

�(u; x) =
1

2

1X
k=0

(xTkQxk + uTkRuk +�uTkS�uk); (1)

subject to the following constraints:

x0 = x̂j; xk+1 = Axk +Buk; (2a)

Duk � d; G�uk � g; Hxk � h; (2b)

where xk 2 Rn, uk 2 Rm, and �uk = uk�uk�1. The vector x̂j represents the current estimate
of the state at discrete time j, whereas xk represents the state at k sampling steps along the
future prediction horizon and uk represents the input at this same time. We assume that Q
and S are SPSD matrices and that R is SPD.

By a suitable adjustment of the origin, the formulation (1), (2) can also account for target
tracking and disturbance rejection [16]. If there is a feasible point for the constraints (2),
the in�nite horizon regulator formulation is stabilizing whenever (A;B) is stabilizable and
(A;Q1=2) is detectable [22].

For unstable state transition matrices, (1), (2) is ill-conditioned because the in�nite
horizon formulation can potentially yield unbounded solutions. To improve the conditioning
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of the optimization, we parameterize the input as uk = Lxk+rk, where L is a linear stabilizing
feedback gain for (A;B) [11, 20]. The system model becomes

xk+1 = (A+BL)xk +Brk; (3)

where rk is the new manipulated input. By initially specifying a stabilizing (but potentially
infeasible) trajectory, we can improve the numerical conditioning of the optimization by
excluding unstable solutions.

By expanding �uk, we transform (1), (2) into the following more tractable form:

min
u;x

�(u; x) =
1

2

1X
k=0

(xTkQxk + uTkRuk + 2xTkMuk); (4)

subject to

x0 = x̂j; xk+1 = Axk +Buk; (5a)

Duk �Gxk � d; Hxk � h: (5b)

The original formulation (1), (2) can be recovered from (4), (5) by making the following
substitutions into the second formulation:

x̂j  

�
x̂j
uj�1

�
; xk  

�
xk
uk�1

�
; uk  rk; A 

�
A+BL 0

L 0

�
; B  

�
B
I

�
;

Q 

�
Q+ LT (R + S)L �LTS

�SL S

�
; M  

�
LT (R + S)
�S

�
; R R + S;

D  

�
D
G

�
; G 

�
�DL 0
�L G

�
; d  

�
d
g

�
; H  

�
H 0

�
:

In the remainder of this section, we address two issues. The �rst is the replacement of
(4), (5) by an equivalent (or similar) �nite horizon problem, a step necessary for practical
computation of the solution. The second issue is replacement of the constraints Hxk � h by
so-called soft constraints. Instead of enforcing these conditions strictly, we add terms to the
objective that penalize violations of these conditions. This technique is a more appropriate
way of dealing with certain constraints from an engineering point of view.

2.2 Receding Horizon Regulator Formulation

The key step in reducing (4), (5) to a �nite-horizon problem is the use of a linear control
law to determine uk after a certain time horizon, that is,

uk = Kxk; for all k � N: (6)

With this added constraint, the states xk, k > N and the inputs uk, k � N are completely
determined by xN , the state at the end of the prediction horizon.
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Two techniques can be used to determine the law (6). The �rst, due to Rawlings and
Muske [18], sets K = 0 uniformly in (6) and produces an approximate solution to (4), (5).
With this substitution, we have

1

2

1X
k=N

(xTkQxk + uTkRuk + 2xTkMuk) =
1

2

1X
k=N

xTk
�Qxk: (7)

If A is stable, this sum is equal to (1=2)xTN �QxN , where �Q is the solution of the matrix
Lyapunov equation

�Q�AT �QA = Q: (8)

If A is unstable, the sum (7) may be in�nite, so we impose a stabilizing constraint to derive
any useful information from the solution of the model problem. The Schur decomposition of
A can be used to construct a basis for the stable subspace of A. If this decomposition is

A = UTUT =
�
Us Uu

� � T11 T12
0 T22

� �
UT
s

UT
u

�
;

where the eigenvalues of T11 are inside the unit circle whereas those of T22 are contained on
or outside the unit circle, then the (orthogonal) columns of Us span the stable subspace of
A and the (orthogonal) columns of Uu span orthogonal complement of the stable subspace
of A. We add the endpoint constraint

FxN = 0 (where F = UT
u ) (9)

to ensure that the unstable modes have vanished by stage N [14]. (Since the input uk is
zero for all k � N , the unstable modes also remain at zero at all subsequent stages.) The
evolution of the stable modes on the in�nite horizon can be accounted for by solving the
following Lyapunov equation for �Q:

�Q�AT
s
�QAs = Q;

where As = UsT11U
T
s , and replacing the in�nite sum with (1=2)xTN �QxN , as above.

In the second formulation, discussed by Keerthi [11], Sznaier and Damborg [24], Chmielewski
and Manousiouthakis [4], and Scokaert and Rawlings [21], the input after stage N is param-
eterized with the classical linear quadratic gain K obtained from the solution of the steady-
state Riccati equation. This matrix, used in conjunction with the control law (6), is the
solution to the \unconstrained" version of the problem, in which the inequality constraints
(5b) do not appear. By using (6), the in�nite tail of the sum in (4) can be written as

1

2

1X
k=N

(xTkQxk + uTkRuk + 2xTkMuk) =
1

2

1X
k=N

(xTkQxk + xTkK
TRKxk + 2xTkMKxk):

This in�nite summation can be replaced by the single term (1=2)xTN �QxN , where �Q is the
solution of the following discrete-time algebraic Riccati equation:

�Q = Q+AT �QA� (AT �QB +M)(R +BT �QB)�1(BT �QA+MT ): (10)
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In both formulations, the feedback law (6) is valid only if the constraints (5) are satis�ed
at all stages, including the stages k � N . Hence, we would like to implement this law only
after we reach a state xN such that the solution generated by the control law (6) and the
model equation in (5a) at stages k � N satis�es the inequalities (5b) at all such stages. We
de�ne a set X of states for which this property holds, as follows:

X = fx : H(A�BK)lx � h; (DK �G)(A�BK)lx � d; for all l � 0g:

whereK is the optimal unconstrained linear control law obtained from the following equation:

K = �(R+BT �QB)�1(BT �QA+MT ): (11)

If N is chosen so that xN 2 X , then the following �nite-horizon problem is equivalent1 to
(4), (5):

min
u;x

�(u; x) =
1

2

N�1X
k=0

(xTkQxk + uTkRuk + 2xTkMuk) +
1

2
xTN

�QxN ; (12)

subject to

x0 = x̂j; xk+1 = Axk +Buk; k = 0; 1; 2; : : : ; (13a)

uk = Kxk; k � N; (13b)

Duk �Gxk � d; Hxk � h; k = 0; 1; 2; : : : ; N � 1; (13c)

where �Q is de�ned in (10).
If the components of h and d are strictly positive and the \unconstrained" model is

stabilizable, we can show that X contains 0 in its interior. Under these circumstances, there
is an index N1 such that

xk =2 X ; k < N1; xk 2 X ; k � N1: (14)

Since N1 is di�cult to obtain in practise and X is characterized by a �nite number of
conditions, we can solve the problem (12), (13) for some �xed value of N and then check
that the states and inputs at stages k � N continue to satisfy the inequality constraints at
subsequent stages. If not, we increase N and repeat the process.

A variety of methods guarantee that the constraints are satis�ed on the in�nite horizon by
checking a �nite number of stages k � N . Scokaert and Rawlings [21] propose constructing
an open ball Bx contained within the set X , thereby allowing termination of the search when
xk 2 Bx for k � N . The approximation for X tends to be conservative, however, since the
algorithm is motivated by norm-bounding arguments. A more practical method, given by
Gilbert and Tan [7], is to explicitly construct the set X . The constructive representation of
X provides a priori an upper bound l on number of feasible stages k 2 [N;N + l] necessary

1The �nite-horizon problem is also a valid approximation to (4), (5) for K = 0 when the endpoint
constraint FxN = 0 is added to (13) and �Q is de�ned by (8)
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to guarantee that all of the subsequent stages k � l + N are feasible. The drawback of
this approach is that the algorithm for constructing the maximal sets is not guaranteed
to converge for unbounded feasible regions, since X may be unbounded. For a compact,
convex set of states, an alternative approach that circumvents having to check for constraint
violations is given by Chmielewski and Manousiouthakis [4]. By examining the extremal
points on the feasible region, they calculate a conservative upper bound on the N required
to guarantee that the solution is feasible on the in�nite horizon.

We have assumed to this point that there exists a feasible solution with respect to the
input and endpoint constraints for the optimal control calculation. In the presence of side
constraints (2b), it is no longer true that the constrained regulator stabilizes all possible states
even when the stabilizability assumption is satis�ed. When stabilization is not possible, the
problem (4), (5) is an infeasible optimization problem. (In actual operation, an infeasible
solution would signal a process exception condition.)

For the Rawlings-Muske formulation, enforcement of the endpoint constraint (9) often
results in an infeasible optimization problem. Feasibility can often be recovered by increasing
the horizon length N , but when the initial state is not stabilizable, the feasible region will
continue to be empty for all N . The existence of a feasible N can easily be checked by
solving the following linear program:

min
u;x;r

eTr; (15)

(where e is the vector whose entries are all 1) subject to the constraints

xk+1 = Axk +Buk; k = 0; 1; 2; : : : ; N � 1;

Duk �Gxk � d; Hxk � h; k = 0; 1; 2; : : : ; N � 1; (16)

r � FxN � 0; r + FxN � 0:

A positive solution to the linear program indicates that a feasible solution does not exist and
the horizon length N must be increased. If the feasibility check fails for some user supplied
upper bound on the horizon length, then current state is not constrained stabilizable for the
speci�ed regulator.

2.3 Feasibility and Soft Constraints

In the formulation of the MPC problem, some state constraints are imposed by physical
limitations such as valve saturation. Other constraints are less important; they may represent
desired ranges of operation for the plant, for instance. In some situations, no set of inputs
and states for the MPC problem may satisfy all of these constraints. Rather than having the
algorithm declare infeasibility and return without a result, we prefer a solution that enforces
some constraints strictly (\hard constraints"), while relaxing others and replacing them with
penalties on their violation (\soft constraints").

Scokaert and Rawlings [22] replace the soft constraints with penalty terms in the objec-
tive that are a combination of `1 norms and squared `2 norms of the constraint violations.
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Assuming for simplicity that all state constraints Hxk � h in (13) are softened in this way,
we obtain the following modi�cation to the objective (12):

min
u;x;�

�(u; x; �) =
1

2

N�1X
k=0

(xTkQxk + uTkRuk + 2xTkMuk + �TkZ�k) + zT �k +
1

2
xTN

�QxN ; (17)

where the constraint violations �k are de�ned by the following formulae (which replaceHxk �
h):

Hxk � �k � h; �k � 0; (18)

and the elements of the vector z are nonnegative, while Z is an SPSD matrix. It is known
that when the weighting z on the `1 terms is su�ciently large (see, for example, Section
12.3 in Fletcher [6]), and when the original problem (12), (13) has a nonempty feasible
region, then local minimizers of problem (12), (13) modi�ed by (17), (18) de�ned above
correspond to local solutions of the unmodi�ed problem (12), (13). Under these conditions,
(17) together with the constraints (18) is referred to as an exact penalty formulation of the
original objective (12) with the original constraints Hxk � h. This formulation has the
advantage that it can still yield a solution when the original problem (12), (13) is infeasible.

Prior to actually solving the problem, we cannot know how large the elements of z must
be chosen to make the exact penalty property hold. (The threshold value depends on the
optimal multipliers for the original problem (12), (13).) A conservative state-dependent
upper bound for these multipliers can be obtained by exploiting the Lipschitz continuity of
the quadratic program [10]. In practice, however, the exact penalty is not critical, since by
de�nition soft constraints need not be satis�ed exactly. Reasonable controller performance
can often be achieved by setting z = 0 and choosing Z to be a positive diagonal matrix. In
fact, the inclusion of the `2 term �TkZ�k is not needed at all for the exact penalty property
to hold, but is included here to provide a little more 
exibility in the modeling.

In the remainder of the paper, we work with a general form of the MPC problem, which
contains all the features discussed in this section: �nite horizon, endpoint constraints, and
soft constraints. This general form is

min
u;x;�

�(u; x; �) =

N�1X
k=0

1

2
(xTkQxk + uTkRuk + 2xTkMuk + �TkZ�k) + zT�k + xTN

�QNxN ; (19)

subject to

x0 = x̂j; (�xed) (20a)

xk+1 = Axk +Buk; k = 0; 1; : : : ; N � 1; (20b)

Duk �Gxk � d; k = 0; 1; : : : ; N � 1; (20c)

Hxk � �k � h; k = 1; 2; : : : ; N; (20d)

�k � 0; k = 1; 2; : : : ; N; (20e)

FxN = 0: (20f)
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(Note that (20f) is required only when we choose the parameterization K = 0.) We assume
throughout that the matrices in (19) satisfy the properties

R is PSD; Z is SPSD;

�
Q M
MT R

�
is SPSD: (21)

Note that the last property holds for the matrices considered in Section 2.1, since in making
the substitutions to obtain the form (4) we obtain

�
Q M
MT R

�
 

2
4 Q+ LT (R + S)L �LTS LT (R+ S)

�SL S �S
(R + S)L �S (R + S)

3
5

=

2
4 Q 0 0

0 0 0
0 0 0

3
5 +

2
4 LT

�I
I

3
5S � L �I I

�
+

2
4 LT

0
I

3
5R � L 0 I

�
;

which is a sum of SPSD matrices and is therefore itself SPSD.

3 The Interior-Point Method

In this section, we describe our interior-point-based approach for solving the MPC problem
(19), (20). We start with a general description of the interior-point method of choice for
linear and convex quadratic programming: Mehrotra's predictor-corrector algorithm. The
remaining sections describe the specialization of this approach to MPC, including the use of
the Riccati approach to solve the linear subproblem, handling of endpoint constraints, and
hot starting.

3.1 Mehrotra's Predictor-Corrector Algorithm

Active set methods have proved to be e�cient for solving quadratic programs with general
constraints. The interior-point approach has proved to be an attractive alternative when
the problems are large and convex. In addition, this approach has the advantage that
the system of linear equations to be solved at each iterate has the same dimension and
structure throughout the algorithm, making it possible to exploit any structure inherent
in the problem. The most widely used interior-point algorithms do not require a feasible
starting point to be speci�ed. In fact, they usually generate infeasible iterates, attaining
feasibility only in the limit. From a theoretical viewpoint, interior-point methods exhibit
polynomial complexity, in contrast to the exponential complexity of active-set approaches.

In this section, we sketch an interior-point method for general convex quadratic program-
ming problems and discuss its application to the speci�c problem (19). A more complete
description is given by Wright [28].

Consider the following convex quadratic program

min
w

�(w) =
1

2
wTQw + cTw; subject to Fw = g, Cw � d, (22)
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where Q is an SPSD matrix. The Karush-Kuhn-Tucker (KKT) conditions for optimality
are that there exist vectors �� and �� such that the following conditions are satis�ed for
(w; �; �) = (w�; ��; ��):

Qw + F T� + CT� + c = 0;

�Fw + g = 0;

�Cw+ d � 0;

� � 0;

�j(�Cw+ d)j = 0; j = 1; 2; : : : ;m,

wherem is the number of rows in the matrixC. Because the objective function is convex, the
KKT conditions are both necessary and su�cient for optimality. By introducing a vector
t of slacks for the constraint Cw � d, we can rewrite these conditions in a slightly more
convenient form:

F(w; �; �; t) =

2
664
Qw + F T� + CT� + c

�Fw+ g
�Cw � t+ d

T�e

3
775 = 0; (23a)

(�; t) � 0; (23b)

where T and � are diagonal matrices de�ned by

T = diag(t1; t2; : : : ; tm); � = diag(�1; �2; : : : ; �m);

and e = (1; 1; : : : ; 1)T .
Primal-dual interior-point methods generate iterates (wi; �i; �i; ti), i = 1; 2; : : :, with

(�i; ti) > 0 that approach feasibility with respect to the conditions (23a) as i ! 1. The
search directions are Newton-like directions for the equality conditions in (23a). Dropping
the superscript and denoting the current iterate by (w; �; �; t), we can write the general
linear system to be solved for the search direction as2

664
Q F T CT

�F
�C �I

T �

3
775
2
664
�w
��
��
�t

3
775 =

2
664
rQ
rF
rC
rt

3
775 : (24)

(Note that the coe�cient matrix is the Jacobian of the nonlinear equations (23a).) Di�er-
ent primal-dual methods are obtained from di�erent choices of the right-hand side vector
(rQ; rF ; rC; rt). The duality gap � de�ned by

� = �T t=m (25)

is typically used as a measure of optimality of the current point (w; �; �; t). In principle,
primal-dual interior-point methods ensure that the norm of the function F de�ned by (23a)
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remains bounded by a constant multiple of � at each iterate, thus ensuring that � is also a
measure of infeasibility of the current point. However, the latter condition is rarely checked
in practical algorithms.

We use a variant of Mehrotra's predictor-corrector algorithm [15] to solve (22). This
algorithm has proved to be the most e�ective approach for general linear programs and is
similarly e�ective for convex quadratic programming. The �rst part of the Mehrotra search
direction|the predictor or a�ne-scaling step|is simply a pure Newton step for the system
(23a), obtained by solving (24) with the following right-hand side:2

664
rQ
rF
rC
rt

3
775 = �F(w; �; �; t) = �

2
664
Qw+ F T� + CT�+ c

�Fw + g
�Cw� t+ d

T�e

3
775 : (26)

We denote the corresponding solution of (24) by (�wa�;��a�;��a�;�ta�). The second
part of the search direction|the centering-corrector direction (�wcc;��cc;��cc;�tcc)|is
calculated by choosing the centering parameter � 2 [0; 1) as outlined below and solving the
system (24) with the following right-hand side:2

664
rQ
rF
rC
rt

3
775 =

2
664

0
0
0

��Ta���a�e+ ��e

3
775 ; (27)

where �Ta� and ��a� are the diagonal matrices constructed from the elements of �ta� and
��a�, respectively.

The following heuristic for choosing the value of � has proved to be highly e�ective.
We �rst compute the maximum step length �a� that can be taken along the a�ne-scaling
direction, as follows:

�a� = arg maxf� 2 [0; 1] j (�; t) + �(��a� ;�ta�) � 0g:

The duality gap �a� attained from this full step to the boundary is

�a� = (�+ ���a�)
T (t+ ��ta�)=m:

Finally, we set

� =

�
�a�
�

�3

:

The search direction is obtained by adding the predictor and centering-corrector direc-
tions, as follows:

(�w;��;��;�t) = (�wa�;��a�;��a�;�ta�) + (�wcc;��cc;��cc;�tcc): (28)
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Note that the coe�cient matrix in (24) is the same for both the predictor and centering-
corrector systems, so just one factorization of this matrix is required at each iteration.
Apart from this factorization, the main computational operations at each iteration include
two back-substitutions for two di�erent right-hand sides, and a number of matrix-vector
operations.

The distance we move along the direction (28) is de�ned in terms of the maximum step
�max that can be taken without violating the condition (23b):

�max = arg maxf� 2 [0; 1] j (�; t) + �(��;�t) � 0g:

The actual steplength � is chosen to be

� 
�max; (29)

where 
 is a parameter in the range (0; 1) chosen to ensure that the pairwise products �iti
do not become too unbalanced. The value of 
 is typically close to 1; it has proved e�ective
in practice to allow it to approach 1 as the algorithms gets closer and closer to the solution.
See Mehrotra [15] for the details of a heuristic for choosing 
.

The algorithm does not require the initial point to be feasible, and checks can be added
to detect problems for which no feasible points exist. In our case, feasibility of the MPC
problem obtained from the Rawlings and Muske formulation with unstable plants can be
determined a priori by solving the linear program (15), (16).

Finally, we note that block elimination can be applied to the system (24) to obtain reduced
systems with more convenient structures. By eliminating�t, we obtain the following system:2

4 Q F T CT

�F
�C ��1T

3
5
2
4 �w

��
��

3
5 =

2
4 rQ

rF
rC + ��1rt

3
5 def
=

2
4 r̂Q
r̂F
r̂C

3
5 : (30)

Since ��1T is a positive diagonal matrix, we can easily eliminate �� as well to obtain�
Q+ CT�T�1C F T

�F 0

� �
�w
��

�
=

�
rQ � CTT�1(�rC + rt)

rF

�
: (31)

As we see in the next section, these eliminations can be applied to our particular problem
to put the system in a form in which we can apply the Riccati block-elimination technique
of Sections 3.3 and 3.4.

We conclude with a note on the sizes of elements in t and � and their e�ect on elements of
the matrices in (30) and (31). In path-following interior-point methods that adhere rigorously
to the theory, iterates are con�ned to a region in which the pairwise products ti�i are not
too di�erent from each other in size. A bound of the form

ti�i � 
� (32)
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is usually enforced, where � is the average value of ti�i (see (25)) and 
 2 (0; 1) is constant,
typically 
 = 10�4. When the primal-dual solution set for (22) is bounded, we have further
that

ti � �; �i � �; i = 1; 2; : : : ;m; (33)

for some constant bound � > 0. It follows immediately from (32) and (33) that




�2
� �

ti
�i
�

�2



��1;




�2
� �

�i
ti
�

�2



��1: (34)

Hence, the diagonal elements of the matrices T�1� and ��1T lie in the range [�(�);�(��1)].
Although bounds of the form (32) are not enforced explicitly in most implementations of

Mehrotra's algorithm, computational experience shows that they are almost always satis�ed
in practice. Hence, it is reasonable to assume, as we do in the analysis of numerical stability
below, that the estimates (34) are satis�ed by iterates of our algorithm.

3.2 E�cient MPC Formulation

The optimal control problem (19), (20) traditionally has been viewed as a problem in which
just the inputs are variables, while the states are eliminated by direct substitution using
the transition equation (20b) (see, for example, Muske and Rawlings [16]). We refer to this
formulation hereafter as the standard method. Unfortunately, the constraint and Hessian
matrices in the reduced problem resulting from this procedure are generally dense, so the
computational cost of solving the problem is proportional to N3. E�cient commercial solvers
for dense quadratic programs (such as QPSOL [8]) can then be applied to the reduced
problem.

Unless the number of stages N is small, the O(N3) cost of the standard method is
unacceptable because the \unconstrained" version of (19) is known to be solvable in O(N)
time by using a Riccati equation or dynamic programming. We are led to ask whether there
is an algorithm for the constrained problem (19), (20) that preserves the O(N) behavior. In
fact, the interior-point algorithm of the preceding section almost attains this goal, since it
can be applied to the problem (19), (20) at a cost of O(N) operations per iteration. The rows
and columns of the reduced linear systems (30) and (31) can be rearranged to make these
matrices banded, with dimension proportional to N and and bandwidth independent of N .
Since the number of iterations required by the interior-point algorithm depends only weakly
on N in practice, the total computational cost of this approach is only slightly higher than
O(N). In both the active set and interior-point approaches, the dependence of solution time
on other parameters, such as the number of inputs, the number of states, and the number
of side constraints, is cubic.

Wright [25, 27] describes a scheme in which these banded matrices are explicitly formed
and factored with a general banded factorization routine. In the next section, we show that
the linear system to be solved at each interior-point iteration can be reduced to a form
identical to the \unconstrained" version of (19), (20), that is, a form in which the side

13



constraints (20c), (20d) are absent. Hence, a Riccati recursion similar to the technique used
for the unconstrained problem can be used to solve this linear system. Even though such a
scheme places restrictions on the use of pivoting for numerical stability, we show by a simple
argument that numerical stability can be expected.

Suppose that the interior-point algorithm of Section 3.1 is applied to the problem (19),
(20). We use �k, �k, and �k to denote the Lagrange multipliers for the constraints (20c), (20d),
and (20e), respectively. We rearrange the linear system (30) to be solved at each iteration of
the interior-point method by \interleaving" the variables and equations according to stage
index. That is, the primal and dual variables for stage 0 are listed before those for stage 1,
and so on. For this ordering, the rows of the system (30) that correspond to stage k are as
follows:

2
66666666664

: : : Q M �GT AT

MT R DT BT

�G D ��D
k

A B �I
���

k+1 �I
��H

k+1 �I H
�I �I Z

�I HT Q : : :

3
77777777775

2
6666666666666664

...
�xk
�uk
��k
�pk+1
��k+1
��k+1
��k+1
�xk+1

...

3
7777777777777775

=

2
6666666666666664

...
rxk
ruk
r�k
rpk+1
r�k+1
r�k+1
r�k+1
rxk+1
...

3
7777777777777775

:

(35)
In this system, the diagonal matrices �D

k , �
�
k, and �H

k , which correspond to ��1T in the
general system (30), are de�ned by

�D
k = (�k)

�1T �
k ; ��

k = (�k)
�1T �

k ; �H
k = (Hk)

�1T �
k ; (36)

where �k, �k, and Hk are the diagonal matrices whose diagonal elements are the Lagrange
multipliers �k, �k, and �k, while T �

k , T
�
k , and T �

k are likewise diagonal matrices constructed
from the slack variables associated with the constraints (20c), (20d), and (20e), respectively.
The �nal rows in this linear system are

2
6666666666664

: : : Q M �GT AT

MT R DT BT

�G D ��D
N�1

A B �I
���

N �I
��H

N �I H
�I �I Z

�I HT �QN F T

F

3
7777777777775

2
6666666666666664

...
�xN�1
�uN�1
��N�1
�pN
��N
��N
��N
�xN
��

3
7777777777777775

=

2
6666666666664

rxN�1
ruN�1
r�N�1
rpN�1
r�N�1
r�N�1
r�N�1
rxN
r�

3
7777777777775
;

(37)
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where � denotes the Lagrange multiplier for the endpoint constraint (20f).
By eliminating the Lagrange multiplier steps ��k, ��k, ��k, and ��k from the systems

(35) and (37), we derive the following analog of the compact system (31):2
6666666666666664

R0 BT

B �I
�I Q1 M1 AT

MT
1 R1 BT

A B �I
�I Q2 M2 AT

MT
2 R2 BT

A B
. . .

. . .
. . . QN F T

F

3
7777777777777775

2
6666666666666664

�u0
�p0
�x1
�u1
�p1
�x2
�u2
...

�xN
��

3
7777777777777775

=

2
6666666666666664

~ru0
~rp0
~rx1
~ru1
~rp1
~rx2
~ru2
...
~rxN
r�

3
7777777777777775

; (38)

where

Rk = R+DT (�D
k )

�1D; k = 0; : : : ; N � 1;
Mk = M �GT (�D

k )
�1D; k = 1; : : : ; N � 1;

Zk = Z + (��
k)
�1 + (�H

k )
�1; k = 1; : : : ; N;

Qk = Q+GT (�D
k )

�1G+HT [(�H
k )

�1 � (�H
k Zk�H

k )
�1]H; k = 1; : : : ; N � 1;

QN = �QN +HT [(�H
N)

�1 � (�H
NZN�H

N )
�1]H;

(39)

and

~ruk = ruk +DT (�D)�1r�k ; k = 0; : : : ; N � 1;
~rpk = rpk; k = 0; : : : ; N � 1;

~r�k = r� � (��
k)
�1r�k � (�H

k )
�1r�k; k = 1; : : : ; N;

~rxk = rxk +�G
T (�D

k )
�1r�k +HT (�H

k )
�1r�k +HT (�H

k Zk)�1~r�k; k = 1; : : : ; N � 1;
~rxN = rxN +HT (�H

N )
�1r�N +HT (�H

NZN )�1~r�N :

(40)

This matrix has the same form as the KKT matrix obtained from the following problem in
which the only constraint (apart from the model equation and initial state) is a �nal point
condition:

min
u;x

�(u; x) =
1

2
uT0R0u0 +

N�1X
k=1

1

2
(xTkQkxk + uTkRkuk + 2xTkMkuk) +

1

2
xTNQNxN ; (41)

subject to

x0 = x̂j; (�xed); (42a)

xk+1 = Axk +Buk; k = 0; 1; : : : ; N � 1; (42b)

FxN = 0: (42c)
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The problem (41), (42) is convex if the matrices R0, QN , and�
Qk Mk

MT
k Rk

�
; k = 1; 2; : : : ; N � 1; (43)

are all SPSD. The following brief discussion shows that this property holds. First, we show
that

(�H
k )

�1 � (�H
k Zk�

H
k )

�1 is positive diagonal for all k = 1; 2; : : : ; N: (44)

By using the de�nition of Zk above, together with the diagonality of Z and ��
k, we have that

(�H
k )

�1 � (�H
k Zk�

H
k )

�1

= (�H
k )

�1[I � (�H
k Zk)

�1] = (�H
k )

�1[I �
�
�H
k Z + �H

k (�
�
k)
�1 + I

�
�1
]:

Since Z, �H
k , and ��

k are all positive diagonal matrices, the �nal expression above is a
product of two positive diagonal matrices, and therefore is itself positive diagonal. Hence,
property (44) holds. Note from (39) that QN is an SPSD modi�cation of an SPSD matrix,
and therefore is itself SPSD. Note too that from (39) again, we have�

Qk Mk

MT
k Rk

�

=

�
Q M
MT R

�
+

�
DT

�GT

�
(�D

k )
�1
�
D �G

�
+

�
HT [(�H

k )
�1 � (�H

k Zk�H
k )

�1]H 0
0 0

�
;

for all k = 1; 2; : : : ; N �1. Because of (44), we have that the left-hand side of this expression
is a sum of SPSD terms, and therefore is itself SPSD. Finally, note from (39) that each Rk,
k = 0; 1; : : : ; N � 1 is the sum of a PSD matrix R and an SPSD term DT (�D

k )
�1D, and is

therefore itself SPD. We conclude that the objective function (41) is convex.
If we use n to denote the number of components of each state vector xk and m to denote

the number of components of each input vector uk, we �nd that the banded coe�cient matrix
in (38) has dimension approximately N(2n+m) and half-bandwidth approximately 2n+m,
so that the computational cost of factoring it by Gaussian elimination would be proportional
to N(m+n)3. This estimate is linear in N , unlike the naive dense implementation for which
the cost grows like N3(m+ n)3.

3.3 Block Elimination: No Endpoint Constraints

We can improve the e�ciency of the algorithm by applying a block factorization scheme
to (38) in place of the elimination scheme for general banded matrices. In this section, we
consider the case in which endpoint constraints are not present in the problem (so that the
quantities F , ��, and r� do not appear in (38)). We describe a block elimination scheme
and show that it yields a Riccati recursion.
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For simplicity, we rewrite the system (38) for the case of no endpoint constraints as
follows:

2
66666666666664

R0 BT

B �I
�I Q1 M1 AT

MT
1 R1 BT

A B �I
�I Q2 M2 AT

MT
2 R2 BT

A B
. . . . . .
. . . �QN

3
77777777777775

2
6666666666666664

c�u0c�p0c�x1c�u1c�p1c�x2c�u2
...c�xN

3
7777777777777775

=

2
66666666666664

~ru0
~rp0
~rx1
~ru1
~rp1
~rx2
~ru2
...
~rxN

3
77777777777775
: (45)

Our scheme yields a set of matrices �k 2 Rn�n and vectors �k 2 Rn, k = N;N �1; : : : ; 1,
such that the following relationship holds between the unknown vectors c�pk�1 and c�xk in
(45):

�c�pk�1 +�k
c�xk = �k; k = N;N � 1; : : : ; 1: (46)

We can see immediately from (45) that (46) is satis�ed for k = N if we de�ne

�N = �QN ; �N = ~rxN : (47)

The remaining quantities �k and �k can be generated recursively. If (46) holds for some
k, we can combine this equation with three successive block rows from (45) to obtain the
following subsystem:

2
664
�I Qk�1 Mk�1 AT

MT
k�1 Rk�1 BT

A B 0 �I
�I �k

3
775

2
666664

c�pk�2c�xk�1c�uk�1c�pk�1c�xk

3
777775 =

2
664
~rxk�1
~ruk�1
~rpk�1
�k

3
775 : (48)

Elimination of c�pk�1 and c�xk yields
�
�I Qk�1 +AT�kA AT�kB +Mk�1

0 BT�kA+MT
k�1 Rk�1 +BT�kB

� 264
c�pk�2c�xk�1c�uk�1

3
75 =

�
~rxk�1 +AT�k~r

p
k�1 +AT�k

~ruk�1 +BT�k~r
p
k�1 +BT�k

�
:

(49)

Finally, elimination of c�uk�1 yields the equation
�c�pk�2 +�k�1

c�xk�1 = �k�1: (50)
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where

�k�1 = Qk�1 +AT�kA� (51a)

(AT�kB +Mk�1)(Rk�1 +BT�kB)
�1(BT�kA+MT

k�1);

�k�1 = ~rxk�1 +AT�k~r
p
k�1 +AT�k � (51b)

(AT�kB +Mk�1)(Rk�1 +BT�kB)
�1(~ruk�1 +BT�k~r

p
k�1 +BT�k):

The equation (51a) is the famous discrete-time Riccati equation for time-varying weighting
matrices.

The solution of (45) can now be obtained as follows. We �rst set �N and �n using (47),
and then apply (51a) to obtain �k and �k for for k = N � 1; N � 2; : : : ; 1. Next, we combine
(46) for k = 1 with the �rst two rows of (45), we obtain2

4 R0 BT

B �I
�I �1

3
5
2
64
c�u0c�p0c�x1

3
75 =

2
4 ~ru0

~rp0
�1

3
5 ; (52)

and solve this system for c�u0, c�x1, and c�p0. Next, we obtain from (49) and (48) that

c�uk = (Rk +BT�k+1B)
�1[~ruk +BT�k+1~r

p
k +BT�k+1 � (BT�k+1A+MT

k )c�xk];c�xk+1 = Ac�xk +Bc�uk; k = 1; 2; : : : ; N � 1:

Finally, the steps c�pk for k = N � 1; N � 2; : : : ; 1 can be recovered from (46) The compu-
tational cost of the entire process is O(N(m + n)3).

The question of stability of this approach is an important one. The block elimina-
tion/Riccati scheme just described essentially places restrictions on the pivot sequence, that
is, the order in which the elements of the matrix in (45) are eliminated. (Note however
that pivoting for numerical stability can occur \internally," during the factorization of
(Rk�1 + BT�kB) in (51a) and (51b) for k = N;N � 1; : : : ; 2.) In other circumstances,
pivot restrictions are well known to lead to numerical instability, which manifests itself by
blowup of the intermediate quantities that arise during the factorization (by which we mean
that the intermediate quantities become much larger than the original data of the problem.)
However, in the present case, stability can be established by the simple argument of next
few paragraphs.

The coe�cient matrix in (45) becomes increasingly ill-conditioned near the solution. This
feature results from wide variation among the elements of the diagonal matrices �D

k , �
�
k, and

�H
k de�ned by (36) which, as we see from (34), can vary between �(�) and �(��1), where

the duality measure � approaches zero as the iterates approach the solution. It follows from
(39) that Qk, k = 1; 2; : : : ; N has its eigenvalues in the range [0;�(��1)], while positive
de�niteness of R ensures that the eigenvalues of Rk, k = 0; 1; : : : ; N � 1 lie in an interval
[�(1);�(��1)]. Since we showed earlier that the matrices�

Qk Mk

MT
k Rk

�
; k = 1; 2; : : : ; N � 1;
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are SPSD, we deduce from the comments just made that their eigenvalues too must lie in
the range [0;�(��1)].

We now show that blowup does not occur during computation of the Riccati matrices
�k and that, in all cases, their eigenvalues lie in the range [0;�(��1)]. This is certainly true
of the starting matrix �N de�ned by (47). For the remaining matrices de�ned by (51a), we
assume that our assertion is true for �k for some k, and prove that it continues to hold for
�k�1. Note that the matrix�

Qk�1 Mk�1

MT
k�1 Rk�1

�
+

�
AT

BT

�
�k

�
A B

�
; (53)

has both terms SPSD, with eigenvalues in the range [0;�(��1)]. Since �k�1 is the Schur
complement of (Rk�1 +BT�kB) in the matrix (53), it must be positive semide�nite. (Note
that �k�1 is well de�ned by the formula (51a), since Rk�1+BT�kB is an SPSD modi�cation
of the SPD matrixR, and so its inverse is well de�ned.) Moreover, we can see from (51a) that
�k is obtained by subtracting an SPSD matrix from he SPSD matrix Qk�1 + AT�kA, and
so its eigenvalues are bounded above by the eigenvalues of the latter matrix. By combining
these observations, we conclude that the eigenvalues of �k�1 lie in the range [0;�(��1)], as
claimed.

For the vectors �k, k = N;N � 1; : : : ; 1, we have from the invertibility of Rk�1 +BT�kB
that they are well de�ned. Moreover, since the smallest eigenvalue of Rk�1+BT�kB has size
�(1), we have from the formula (51b) and the estimate k�kk = O(��1) from the previous
paragraph that k�kk = O(��2), and so this vector does not blow up with k either. (In fact,
a more re�ned analysis can be used to deduce that k�kk = O(��1), but we omit the details
of this argument here.)

We conclude that numerical instability is not a problem in applying the block elimina-
tion/Riccati scheme and that, in fact, we can expect this scheme to be as stable as any
general scheme based on Gaussian elimination with pivoting.

It might be expected that the inherent ill conditioning of the system (45) may lead to an
inaccurate computed solution, even when our numerical scheme is stable. It has long been
observed by interior-point practitioners, however, that the computed steps are surprisingly
e�ective steps for the algorithm, even on later iterations on which � is tiny. This observation
has recently found some theoretical support (see Wright [26, 29]) but the issues involved are
beyond the scope of this paper.

3.4 Block Elimination: Endpoint Constraints

When endpoint constraints are present in the problem, they can be accounted for by adding
extra recursions to the scheme of the previous section. We describe this approach below, but
�rst mention an alternative way to handle the problem. The presence of endpoint constraints
in the model is often symptomatic of the transition matrix A having eigenvalues outside the
unit circle. In these circumstances, it is known that Riccati-based techniques can encounter
stability di�culties. These di�culties are ameliorated by the technique of parameterizing the
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input as uk = Lxk+rk, where L is a linear stabilizing feedback gain for (A;B), as mentioned
in Section 2.1. Alternatively, we can simply discard the Riccati strategy and instead apply
a standard banded Gaussian-elimination scheme with partial pivoting to the system (38).
Though this approach does not exploit the structure of the problem quite as well as the
Riccati strategy, its stability is guaranteed. It can be used as a backup approach if stability
problems are encountered with the modi�ed Riccati approach that we now describe.

In the language of linear algebra, our modi�cation of the block-elimination approach
proceeds by partitioning the coe�cient matrix in (38) as�

T11 T12
T T
12 T22

�
;

where

T11 =

2
66666664

R0 BT

B �I
�I Q1 M1 AT

MT
1 R1 BT

A B
. . . . . .
. . . �QN

3
77777775
; T12 =

2
666664

0
0
...
0
F T

3
777775 ; T22 = 0: (54)

We partition the right-hand side and solution of (38) correspondingly and rewrite the system
as �

T11 T12
T T
12 T22

� �
y1
y2

�
=

�
r1
r2

�
;

where r2 = r� and y2 = ��. By simple manipulation, assuming that T11 is nonsingular, we
obtain

[T22 � T T
12T

�1
11 T12]y2 = r2 � T T

12T
�1
11 r1; (55a)

y1 = T�111 r1 � T�111 T12y2: (55b)

We calculate the vector T�111 r1 by using the approach of Section 3.3. The other major
operation is to �nd T�111 T12, which we achieve by solving the following system:2

66666666666664

R0 BT

B �I
�I Q1 M1 AT

MT
1 R1 BT

A B �I
�I Q2 M2 AT

MT
2 R2 BT

A B
. . . . . .
. . . �QN

3
77777777777775

2
666666666664

�u
0

�p
0

�x
1

�u
1

�p
1

�x
2
...
�x
N

3
777777777775
=

2
66666666666664

0
0
0
0
0
0
...
0
F T

3
77777777777775
: (56)
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The structure of this system is identical to (45) except that the right-hand side is now
a matrix instead of a vector. As in the preceding section, we seek n � nf matrices 	k,
k = N;N�1; : : : ; 1 (where nf is the number of rows in F ) such that the following relationship
holds between �p

k�1 and �x
k satisfying (56):

��p
k�1 +�k�

x
k = 	k; k = N;N � 1; : : : ; 1: (57)

(Note that �k in (57) are identical to the matrices generated by the formulae (47), (51a)
of the previous section. This is hardly surprising, since these matrices depend only on the
coe�cient matrix and not on the right-hand side.) An argument like that of the previous
section yields the following recursion for 	k:

	N = F T ;

	k�1 = AT	k � (AT�kB +Mk�1)(Rk�1 +BT�kB)
�1BT	k; k = N;N � 1; : : : ; 2:

We solve (56) by using a similar technique to the one used for (45).
We now recover the solution of (38) via (55). By substituting from (54) and (56), we �nd

that

T22 � T T
12T

�1
11 T12 = �(�x

N )
TF T ;

r2 � T T
12T

�1
11 r1 = r� � F c�xN ;

so that y2 = �� can be found directly by substituting into (55a). We recover the remainder
of the solution vector from (55b) by noting that

T�111 r1 � T�111 T12y2 =

2
6666666666664

c�u0c�p0c�x1c�u1c�p1c�x2
...c�xN

3
7777777777775
�

2
666666666664

�u
0

�p
0

�x
1

�u
1

�p
1

�x
2
...
�x
N

3
777777777775
��:

In the implementation, the recurrences for computing �k, 	k, and �k take place simulta-
neously, as do the recurrences needed for solving the systems (45) and (56). The additional
cost associated with the nf endpoint constraints is O(N(m+ n)2nf). When nf < n|which
is a necessary condition for (38) to have a unique solution|the cost of solving the full system
(38) is less than double the cost of solving the subsystem (45) alone by the method of the
preceding section.
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3.5 Hot Starting

Model predictive control solves a sequence of similar optimal control problems in succession.
If the model is accurate and disturbances are modest, the solution of one optimal control
problem can be shifted one time step forward to yield a good approximation to the solution
of the next problem in the sequence. Unfortunately, an approximate solution of this type
is not a suitable starting guess for the interior-point method, since it usually lies at the
boundary of the feasible region, whereas interior-point methods prefer starting point that
strictly satisfy the inequalities in the constraint set. Starting points close to the so-called
central path are more suitable. In the notation of Section 3.1, the characteristics of such
points are that their pairwise products �iti are similar in value for i = 1; 2; : : : ;m and that
the ratio of the KKT violations in (23a)|measured by F(z; �; �; t)|to the duality gap �
is not too large. We can attempt to �nd near-central points by bumping components of
the \shifted" starting point o� their bound. (In the notation of Section 3.1, we turn the
zero value of either ti or �i into a small positive value.) A second technique is to use a
shifted version of one of the earlier interior-point iterates from the previous problem. Since
the interior-point algorithm tends to follow the central path, and since the central path is
sensitive to data perturbations only near the solution, this strategy generally produces an
iterate that is close to the central path for the new optimal control subproblem.

In the presence of new disturbances, the previous solution has little relevance to the
new optimal control problem. A starting point can be constructed from the unconstrained
solution, or we can perform a cold start from a well-centered point, as is done to good e�ect
in linear programming codes (see Wright [28, Chapter 10]).

4 Computational Results

To gauge the e�ectiveness of the structured interior-point approach, we tested it against the
\standard" quadratic programming approach, in which the states xk are eliminated from the
problem (19), (20) by using the model equation (20b). A reduced problem with unknowns
uk, k = 0; 1; : : : ; N � 1 and �k, k = 1; 2; : : : ; n is obtained. The reduction in dimension is
accompanied by �lling in of the constraint matrices and the Hessian of the objective. The
resulting problem is solved with the widely used code QPSOL [8], which implements an
active set method using dense linear algebra calculations.

We compared these two approaches on three common applications of the model predictive
control methodology.

Example 1: Copolymerization Reactor. Congalidis et al. [5] presented the following
normalized model for the copolymerization of methyl methacrylate (MMA) and vinyl acetate
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Figure 1: Input Pro�le for Example 1

(VA) in a continuous stirred tank reactor:

G(s) =

2
666664

0:34
0:85s+1

0:21
0:42s+1

0:50(0:50s+1)
12s2+0:4s+1 0 6:46(0:9s+1)

0:07s20:3s+1

�0:41
2:41s+1

0:66
1:51s+1

�0:3
1:45s+1 0 �3:72

0:8s+1

0:30
2:54s+1

0:49
1:54s+1

�0:71
1:35s+1

�0:20
2:71s+1

�4:71
0:008s2+0:41s+1

0 0 0 0 1:02
0:07s2+0:31s+1

3
777775 :

The normalized inputs into the system are the 
ows of monomer MMA (u1), monomer VA
(u2), initiator (u3), and transfer agent (u4), and the temperature of the reactor jacket (u5).
The normalized outputs of the systems are the polymer production rate (y1), mole fraction
of MMA in the polymer (y2), average molecular weight of the polymer (y3), and reactor
temperature (y4). The model was realized in block observer canonical form [3] where the
dimension n of state after the realization is 18, and the number m of inputs is 5. The model
was discretized with a sample period of 1.

The normalized inputs were constrained to be within 10% of their nominal operating
steady{state values The tuning parameters were chosen to be Q = CTC (where C is the
measurement matrix obtained from the state space realization), while M = 0, R = (0:1)I,
and the number of stages N is 100. Due to the very slow dynamics of the reactor, �Q was
obtained from the solution of (8). The parameters z and Z are vacuous, since there are no soft
constraints on the state. The controller was simulated with the following state disturbance:

[x0]j = 0:02 � sin j:

The interior-point method required 14 iterations to solve the optimization problem. Figure 1
shows the optimal control pro�le normalized with the upper bounds on the input constraints.

Example 2: Gage Control of a Polymer Film Process. We considered the gage
(cross-directional control) of a 26-lane polymer �lm process with 26 actuators. We used the
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Figure 2: Input Pro�le for Example 2

following model for our simulation:

A = 0:9I; B = (I �A) �K;

where the steady-state gain matrix K was extrapolated from data obtained from a 3M
polymer �lm pilot plant. For this example, the dimension of the state n is 26, and the
number m of inputs is 26. The state [x]j denotes the deviated �lm thickness in the jth lane,
and the input [u]j denotes the deviated position of the jth actuator.

The actuators were constrained between the values of 0:1 and �0:1, while the velocity
of the actuators was constrained between the values of 0:025 and �0:025. Since a large
di�erence between actuator positions can create excess stress on the die, we imposed the
following restriction on the change in input from stage to stage:

j[u]j � [u]j�1j < 0:05; j = 2; 3; : : : ;m:

We chose the tuning parameters to be

Q = I; R = I; S = I:

The matrix �Q was obtained from the solution of (10). The parameters z and Z are vacuous,
since there are no soft constraints on the state. We chose a horizon of N = 30 to guarantee
that the constraints were satis�ed on the in�nite horizon. The interior-point method required
11 iterations. Figure 2 shows the calculated optimal input pro�les.

Example 3: Evaporator. Ricker et al. [19] presented the following model for an evapora-
tion process in a kraft pulp mill:

G(s) =

2
664

1
30s+1 0

648s
(30s+1)(20s+1)

2:7(�6s+1)
(20s+1)(5s+1)

�90s
(30s+1)(30s+1)

�0:1375(�4s+1)
(30s+1)(2:6s+1)

3
775 :
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Figure 3: Input Pro�le at t = 0 for Example 3

The normalized outputs of the process are the feed level (y1), product concentration (y2),
and product level (y3). The normalized inputs for the the process are the feed level setpoint
(u1) and the steam 
ow (u2). The process was realized in block observer canonical form [3]
and sampled every 0.5 minutes. The dimension n of the state after the realization is 9, and
the number m of input is 3.

Both inputs were constrained to lie in the range [�0:2; 0:2], while the three outputs were
constrained to lie in [�0:05; 0:05]. A bound of 0:05 was also imposed on the input velocity.
The controller was tuned with

Q = I; R = I; Z = 0; N = 60:

The matrix �Q was obtained from the solution of (10). A constant `1 penalty of 1000 was
su�cient to force the soft constraints to hold when the solution is feasible. We simulated
the controller with the following state disturbance:

[x0]j = sin(j) + cos(j):

The interior-point method required 18 iterations to solve the optimization problem. Figure 3
shows the calculated optimal input pro�le, while Figure 4 shows the predicted output pro�le.
Note that the constraints for y2 and y3 are initially violated. The constraint for y2 is feasible
when k � 8 and the constraint for y3 is feasible when k � 34. Increasing the `1 penalty did
not change the resulting solution. Decreasing the `1 penalty leads to less aggressive control
action, but the constraints are violated for a longer duration.

The computational times required by the structured interior-point approach and the
naive quadratic programming approach are shown in Table 1. Our platform was a DEC
Alphastation 250, and the times were obtained with the Unix time command. We used the
value 
 = 0:995 in (29) as the proportion of maximum step to the boundary taken by our
algorithm.

For the chosen (large) values of the horizon parameter N , the structured interior-point
method easily outperforms the naive quadratic programming approach. For the latter ap-
proach, we do not include the time required to eliminate the states. These times were often
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Table 1: Computational Times (sec)

Example Structured Interior-Point Naive Quadratic Programming
1 3:80 23:78
2 20:33 276:91
3 2:01 25:32

quite signi�cant, but they are calculated o�ine. For small values of the horizon parame-
ter N , the naive quadratic programming approach outperforms the structured interior-point
method, since the bandwidth is roughly the same relative order of magnitude as the dimen-
sions of (38).

5 Concluding Remarks

We conclude with four brief comments on the structured interior-point method for MPC.
The �rst is that the structured method presented is also directly applicable to the dual
problem of MPC, the constrained moving horizon estimation problem. In fact, the estimation
problem will provide greater justi�cation for structured approach because long horizons N
arise frequently in this context. However, we did not investigate applying the structured
optimization approach because the theory for linear constrained receding horizon estimators
is still in its infancy.

The second comment is that we can extend the structured method to nonlinear MPC
by applying the approach of this paper to the linear-quadratic subproblems generated by
sequential quadratic programming. Wright [25], Arnold et al. [1], and Steinbach [23] all
apply a similar technique to discrete-time optimal-control problems. While some theory for
nonlinear MPC is available, the questions of robust implementation and suitable formulation
of nonlinear MPC have not been resolved. See Mayne [13] for a discussion of the some of
the issues.
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Third, since the computational cost of the proposed algorithm is O(N(m+n)3), systems
with large numbers of states and inputs can still present formidable computational challenges.
Since large systems tend to be sparse (that is, A and B tend to be sparse, while Q and R
tend to be nearly diagonal), we expect substantial increases in computational performance
by exploiting the sparsity in (38) through the use of sparse matrix solvers. Since the sparsity
tends to be structured in many applications, di�erent strategies are preferable for di�erent
classes of processes. See, for example, the paper of Rao et al. [17], who investigated strategies
for further decomposing the problem structure in the gage control of sheet and �lm forming
processes.

The fourth comment concerns time delays, which occur when more than one sampling
period elapses before an input uk a�ects the state of the system. In the simplest case, we
can rewrite the state equation (5a) as

xk+1 = Axk +Buk�d; (58)

for the case in which the delay is d sampling periods. The natural in�nite horizon LQR
objective function for this case is

� =
1

2

1X
k=0

(xTkQxk + uTkRuk + 2xTk+dMuk); (59)

where the cross-penalty term relates uk�d and xk. Since the �rst (d + 1) state vectors
x0; x1; : : : ; xd are independent of the inputs, the decision variables in the optimization prob-
lem are xd+1; xd+2; : : : and u0; u1; : : :. By de�ning

~xk = xk+d; k = 0; 1; 2; : : : ;

and removing constant terms from (59), the objective function and state equation become

�0 = 1
2

P
1

k=0(~x
T
kQ~xk + uTkRuk + 2~xTkMuk); (60)

~x0 = xd; ~xk+1 = A~xk +Buk; k = 0; 1; 2; : : : : (61)

These formulae have the same form as (4) and (5).
If no additional constraints of the form (5b) are present, a Riccati equation may be used

to solve (60), (61) directly, as in Section 2.2. If state constraints of the form Hxk � h or
jump constraints of the form G�uk � g are present (as in (1)), we can still apply constraint
softening (Section 2.3) and use the approaches described in Section 2.2 To obtain �nite-
horizon versions of (60), (61). The techniques of Section 3.1 can then be used to solve the
problem e�ciently.

Di�culties may arise, however, when multiple time delays are present, since these may
reduce the locality of the relationships between the decision variables and lead to signi�cant
broadening of the bandwidths of the matrices in (35) and (38). A process in which two time
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delays are present (of d1 and d2 sampling intervals) can be described by a state equation of
the following form:�

x1k+1
x2k+1

�
=

�
A11 A12

A21 A22

� �
x1k
x2k

�
+

�
B11 B12

B21 B22

� �
u1k�d1
u2k�d2

�
:

A problem with these dynamics can be solved by augmenting the state vector xk with
the input variables uk�d1 ; uk�d1�1; : : : ; uk�d2+1 (assuming that d2 > d1) and applying the
technique for a single time delay outlined above. Alternatively, the KKT conditions for
the original formulation can be used directly as the basis of an interior-point method. The
linear system to be solved at each interior-point iteration will contain not only diagonal
blocks of the form in (35), but also a number of blocks at some distance from the diagonal.
Some rearrangement to reduce the overall bandwidth may be possible, but expansion of the
bandwidth by an amount proportional to (d2 � d1)m is inevitable.

Of course, we can also revert to the original approach of eliminating the states x0; x1; : : :
from the problem to obtain a problem in which the inputs u0; u1; : : : alone are decision
variables. The cost of this approach, too, is higher than in the no-delay case, because
the horizon length N usually must be increased to incorporate the e�ects of the delayed
dynamics. One could postulate that certain processes would be e�ectively handled by the
standard approach while others would be e�ectively handled by the structured approach.
Perhaps the only solution is to exercise engineering judgment to decompose the full control
problem into smaller problems without large delays and treat the neglected delays connecting
the decomposed systems as disturbances. This issue remains unresolved and is a topic of
current research.
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